MID-SEMESTER EXAMINATION, 2ND SEMESTER, COMPLEX ANALYSIS, 2011-12

PRATEEP CHAKRABORTY

1. One such holomorphic map is f(z) = z.

2. As f is holomorphic on a connected open set and assuming that it is not constant, we get f is an open map. But, the image of f is a subset of the set $\{(x, y) \in \mathbb{R}^2 : x = y^2\}$, so is clearly not an open set, which leads to a contradiction. So, f is constant.

3.a) The holomorphic map $\cos z$ is not 0 in a neighbourhood U of 0. So, $\tan z = \frac{\sin z}{\cos z}$ is holomor-

phic in U. So, the power series expansion of $\tan z$ is $(z - \frac{z^3}{6} + \cdots)(1 - \frac{z^2}{2} + \frac{z^4}{24} + \cdots)^{-1}$ $= z(1 - \frac{z^2}{3} + \frac{z^4}{8} + \cdots).$ So, the Laurent series expansion of $\frac{\tan z}{z^4}$ is $\frac{1}{z^3} - \frac{1}{3} \cdot \frac{1}{z} + \frac{1}{8} \cdot z + \cdots$ Hence, at 0, $\frac{\tan z}{z^4}$ has pole and the order of the pole is -3. The residue is $-\frac{1}{3}$.

b) The Laurent series of $\cos(\frac{1}{z})$ is $\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} \cdot \frac{1}{z^{2n}}$. So, 0 is an essential singularity of $\cos(\frac{1}{z})$. $\cos z = i$ implies $z = (2n\pi + \frac{\pi}{2}) + i \log(\sqrt{2} - 1)$ or $z = (2n\pi - \frac{\pi}{2}) + i \log(\sqrt{2} + 1)$. Now, if we take $(2n\pi + \frac{\pi}{2}) + i \log(\sqrt{2} - 1)$, we get an infinite set of isolated points. So, there will be at least one *n* such that $|(2n\pi + \frac{\pi}{2}) + i\log(\sqrt{2} - 1)| > 1$, so for that *n*, we have $|\frac{1}{(2n\pi + \frac{\pi}{2}) + i\log(\sqrt{2} - 1)}| < 1$. So, we get one $z \in B(0,1)$, such that $\cos(\frac{1}{z}) = i$.

c) At all points except 0, $\frac{1-\cos z}{z^2}$ is holomorphic and its Laurent series expansion at 0 is $\frac{1}{z^2}(1-1+\frac{z^2}{2!}-\frac{z^4}{4!}+\cdots)=\frac{1}{2}-\frac{z^2}{4!}+\cdots$. So, at 0, f has removable singularity and one can define $f(0)=\frac{1}{2}$ to remove the singularity.

5. If f is holomorphic on U, then if we take the power series expansion, it would have a positive radius of convergence. Now, we take $a_0 = 0$, $a_n = n! \forall n \ge 1$. As we know that $n! \ge n^n e^{-n}$, so we have $(n!)^{\frac{1}{n}} \ge \frac{n}{e}$ and $\frac{n}{e}$ is unbounded as $n \to \infty$. So, radius of convergence of the power series $\sum a_n z^n$ is 0. Therefore, there is no holomorphic map on U, whose power series expansion is $\sum a_n z^n$. For a holomorphic map $f = \sum a_n z^n$, we have $a_n = \frac{f^n(0)}{n!}$. Hence, if we take $c_0 = 0$ and $c_n = (n!)^2$, we shall not have any holomorphic map f with $f^n(0) = c_n$.

6. Let $f(z) = a_n(z-a)^n + a_{n+1}(z-a)^{n+1} + \cdots$, $n \ge 1$ be the power series expansion. So, $f'(z) = na_n(z-a)^{n-1} + (n+1)a_{n+1}(z-a)^n + \cdots$. Then, $g(z) = \frac{f'(z)}{f(z)}$ = $\frac{na_n(z-a)^{n-1} + (n+1)a_{n+1}(z-a)^n + \cdots}{a_n(z-a)^n + a_{n+1}(z-a)^{n+1} + \cdots}$ = $\frac{na_n(z-a)^{n-1}(1+\cdots)}{a_n(z-a)^n(1+\cdots)}$

 $= \frac{n}{z-a} + b_0 + b_1(z-a) + \cdots$ Hence, residue of g at a is n = order of zero of f at 0.

7. From Residue formula, we know that

$$\int_{\gamma} \frac{f'}{f} = 2\pi i \sum m_i . Res_{z_i} \frac{f'}{f},$$

where γ is a closed curve in B(a, 2r) homologous to 0 and $\frac{f'}{f}$ is a meromorphic function on B(a, 2r) with only a finite no. of poles at points z_1, \dots, z_n , none of which lie on γ and $m_i = W(\gamma, z_i)$ is the winding number.

In this case the cutve $\gamma(t) = a + re^{2\pi i t}$ is homologous to 0 in B(a, 2r) and $\frac{f'}{f}$ has only a finite no. of poles, none of which lie on γ and which are in fact the zeroes of f. By Q6, $Res_{z_i} \frac{f'}{f}$ is the order of zero of f at z_i .

The no. m is $W(\gamma, z_i) = W(\gamma_i, z_i)$ where γ_i is a small circle around z_i contained in B(a, 2r), because γ and γ_i are homotopic in B(a, 2r). We can easily compute that $W(\gamma_i, z_i) = 1$.

Therefore, $\int_{\gamma} \frac{f'}{f} = 2\pi i \sum_{i} order_{z_i} f = 2\pi i .$ (no. of zeroes of f in B(a,2r) counted according to multiplicity).