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1. One such holomorphic map is f(z) = z.

2. As f is holomorphic on a connected open set and assuming that it is not constant, we get f is
an open map. But, the image of f is a subset of the set {(x, y) ∈ R

2 : x = y2}, so is clearly not an
open set, which leads to a contradiction. So, f is constant.

3.a) The holomorphic map cos z is not 0 in a neighbourhood U of 0. So, tan z = sin z
cos z is holomor-

phic in U. So, the power series expansion of tan z is

(z − z3

6 + · · · )(1− z2

2 + z4

24 + · · · )−1

= z(1− z2

3 + z4

8 + · · · ).
So, the Laurent series expansion of tan z

z4 is
1
z3 − 1

3 .
1
z
+ 1

8 .z + · · · .
Hence, at 0, tan z

z4 has pole and the order of the pole is −3. The residue is − 1
3 .

b) The Laurent series of cos(1
z
) is

∑∞
n=0(−1)n 1

(2n)! .
1

z2n . So, 0 is an essential singularity of cos(1
z
).

cos z = i implies z = (2nπ + π
2 ) + i log(

√
2− 1) or z = (2nπ − π

2 ) + i log(
√
2 + 1).

Now, if we take (2nπ+ π
2 )+i log(

√
2−1), we get an infinite set of isolated points. So, there will be at

least one n such that |(2nπ+ π
2 )+ i log(

√
2− 1)|> 1, so for that n, we have | 1

(2nπ+π

2
)+i log(

√
2−1) |< 1.

So, we get one z ∈ B(0, 1), such that cos(1
z
) = i.

c) At all points except 0, 1−cos z
z2 is holomorphic and its Laurent series expansion at 0 is

1
z2 (1 − 1 + z2

2! − z4

4! + · · · ) = 1
2 − z2

4! + · · · .
So, at 0, f has removable singularity and one can define f(0) = 1

2 to remove the singularity.

5. If f is holomorphic on U , then if we take the power series expansion, it would have a positive
radius of convergence. Now, we take a0 = 0, an = n! ∀n ≥ 1. As we know that n! ≥ nne−n, so
we have (n!)

1
n ≥ n

e
and n

e
is unbounded as n → ∞. So, radius of convergence of the power series∑

anz
n is 0. Therefore, there is no holomorphic map on U , whose power series expansion is

∑
anz

n.

For a holomorphic map f =
∑

anz
n, we have an = fn(0)

n! . Hence, if we take c0 = 0 and cn = (n!)2,
we shall not have any holomorphic map f with fn(0) = cn.

6. Let f(z) = an(z − a)n + an+1(z − a)n+1 + · · · , n ≥ 1 be the power series expansion. So,
f ′(z) = nan(z − a)n−1 + (n+ 1)an+1(z − a)n + · · · .
Then, g(z) = f ′(z)

f(z)

= nan(z−a)n−1+(n+1)an+1(z−a)n+···
an(z−a)n+an+1(z−a)n+1+··· .

= nan(z−a)n−1(1+··· )
an(z−a)n(1+··· )

1
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= n
z−a

+ b0 + b1(z − a) + · · · .
Hence, residue of g at a is n = order of zero of f at 0.

7. From Residue formula, we know that

∫
γ

f ′

f
= 2πi

∑
mi.Reszi

f ′

f
,

where γ is a closed curve in B(a, 2r) homologous to 0 and f ′

f
is a meromorphic function on B(a, 2r)

with only a finite no. of poles at points z1, · · · , zn, none of which lie on γ and mi = W (γ, zi) is the
winding number.

In this case the cutve γ(t) = a + re2πit is homologous to 0 in B(a, 2r) and f ′

f
has only a finite no.

of poles, none of which lie on γ and which are in fact the zeroes of f. By Q6, Reszi
f ′

f
is the order

of zero of f at zi.
The no. m is W (γ, zi) = W (γi, zi) where γi is a small circle around zi contained in B(a, 2r), because
γ and γi are homotopic in B(a, 2r). We can easliy compute that W (γi, zi) = 1.

Therefore,
∫
γ

f ′

f
= 2πi.

∑
i orderzif = 2πi.( no. of zeroes of f in B(a,2r) counted according to multiplicity).


